Vector Quantization using the Improved Differential Evolution Algorithm for Image Compression
نویسنده
چکیده
Vector Quantization (VQ) is a popular image compression technique with a simple decoding architecture and high compression ratio. Codebook designing is the most essential part in Vector Quantization. Linde–Buzo–Gray (LBG) is a traditional method of generation of VQ Codebook which results in lower PSNR value. A Codebook affects the quality of image compression, so the choice of an appropriate codebook is a must. Several optimization techniques have been proposed for global codebook generation to enhance the quality of image compression. In this paper, a novel algorithm called IDE-LBG is proposed which uses Improved Differential Evolution Algorithm coupled with LBG for generating optimum VQ Codebooks. The proposed IDE works better than the traditional DE with modifications in the scaling factor and the boundary control mechanism. The IDE generates better solutions by efficient exploration and exploitation of the search space. Then the best optimal solution obtained by the IDE is provided as the initial Codebook for the LBG. This approach produces an efficient Codebook with less computational time and the consequences include excellent PSNR values and superior quality reconstructed images. It is observed that the proposed IDE-LBG find better VQ Codebooks as compared to IPSO-LBG, BA-LBG and FA-LBG.
منابع مشابه
Optimized Vector Quantization for Bayer Color Filter Array
Digital cameras to reduce cost, use an image sensor to capture color images. Color Filter Array (CFA) in digital cameras permits only one of the three primary (red-green-blue) colors to be sensed in a pixel and interpolates the two missing components through a method named demosaicking. Captured data is interpolated into a full color image and compressed in applications. Color interpolation bef...
متن کاملAn Algorithmic Approach for Efficient Image Compression using Neuro-Wavelet Model and Fuzzy Vector Quantization Technique
Applications, which need to store large database and/or transmit digital images requiring high bit-rates over channels with limited bandwidth, have demanded improved image compression techniques. This paper describes practical and effective image compression system based on neuro-fuzzy model which combines the advantages of fuzzy vector quantization with neural network and wavelet transform. Th...
متن کاملIncreasing the Error Tolerance in Transmission of Vector Quantized Images by Self-organizing Map 1. Image Vector Quantization Using Self-organizing Maps
Transmission of Vector Quantized Images by Self-Organizing Map Jari Kangas Helsinki University of Technology Neural Networks Research Centre Rakentajanaukio 2 C, FIN-02150, Espoo, FINLAND tel: +358 0 451 3275, fax: +358 0 451 3277 email: Jari.Kangas@hut. Abstract Image compression is needed for image storage and transmission applications. Vector quantization methods o er good performance when h...
متن کاملThree Improved Codebook Searching Algorithms for Image Compression Using Vector Quantizer
In this paper, we propose three improved codebook searching algorithms for vector quantization (VQ). Our improved schemes are based on three fast searching methods proposed by Huang et al., IEEE Transactions on Image Processing, 1 (3), 1992, 413–416 and the double test (DT) method proposed by Torres and Huguet, IEEE Transactions on Communications, 42 (2|3|4), 1994, 208–210. Compared with three ...
متن کاملVector Quantization Codebook Design and Application Based on the Clonal Selection Algorithm
In the area of digital image compression, the vector quantization algorithm is a simple, effective and attractive method. After the introduction of the basic principle of the vector quantization and the classical algorithm for vector quantization codebook design, the paper, based on manifold distance, presents a clonal selection code book design method, using disintegrating method to produce in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.05311 شماره
صفحات -
تاریخ انتشار 2017